In electronics, a three-dimensional integrated circuit (3D IC) is a chip in which two or more layers of active electronic components are integrated both vertically and horizontally into a single circuit. The semiconductor industry is pursuing this technology in many different forms, but it is not yet widely used; consequently, the definition is still somewhat fluid.
3D packaging saves space by stacking separate chips in a single package. This packaging, known as System in Package (SiP) or Chip Stack MCM, does not integrate the chips into a single circuit. The chips in the package communicate using off-chip signaling, much as if they were mounted in separate packages on a normal circuit board.
In 2004, Intel presented a 3D version of the Pentium 4 CPU. The chip was manufactured with two dies using face-to-face stacking, which allowed a dense via structure. Backside TSVs are used for I/O and power supply. For the 3D floorplan, designers manually arranged functional blocks in each die aiming for power reduction and performance improvement. Splitting large and high-power blocks and careful rearrangement allowed to limit thermal hotspots. The 3D design provides 15% performance improvement (due to eliminated pipeline stages) and 15% power saving (due to eliminated repeaters and reduced wiring) compared to the 2D Pentium 4.
The Teraflops Research Chip introduced in 2007 by Intel is an experimental 80 - core design with stacked memory. Due to the high demand for memory bandwidth, a traditional I/O approach would consume 10 to 25 W. To improve upon that, Intel designers implemented a TSV-based memory bus. Each core is connected to one memory tile in the SRAM die with a link that provides 12 GB/s bandwidth, resulting in a total bandwidth of 1 TB/s while consuming only 2.2 W.
An academic implementation of a 3D processor was presented in 2008 at the University of Rochester by Professor Eby Friedman and his students. The chip runs at a 1.4 GHz and it was designed for optimized vertical processing between the stacked chips which gives the 3D processor abilities that the traditional one layered chip could not reach. One challenge in the manufacturing of the three-dimensional chip was to make all of the layers work in harmony without any obstacles that would interfere with a piece of information traveling from one layer to another.
In ISSCC 2012, two 3D - IC-based multi-core designs using GlobalFoundries 130 nm process and Tezzazon FaStack technology were presented and demonstrated. 3D-MAPS, a 64 custom core implementation with two-logic-die stack was demonstrated by researchers from the School of Electrical and Computer Engineering at Georgia Institute of Technology. The second prototype was from the Department of Electrical Engineering and Computer Science at the University of Michigan called Centip3De, a near-threshold design based on ARM Cortex-M3 cores.
Advantages
Expanded memory capacity, Load reduction, Higher frequency, Bus turn around time will reduce (Improved bus efficiency), Active termination power reduction and Lower power consumption.
3D packaging saves space by stacking separate chips in a single package. This packaging, known as System in Package (SiP) or Chip Stack MCM, does not integrate the chips into a single circuit. The chips in the package communicate using off-chip signaling, much as if they were mounted in separate packages on a normal circuit board.
In 2004, Intel presented a 3D version of the Pentium 4 CPU. The chip was manufactured with two dies using face-to-face stacking, which allowed a dense via structure. Backside TSVs are used for I/O and power supply. For the 3D floorplan, designers manually arranged functional blocks in each die aiming for power reduction and performance improvement. Splitting large and high-power blocks and careful rearrangement allowed to limit thermal hotspots. The 3D design provides 15% performance improvement (due to eliminated pipeline stages) and 15% power saving (due to eliminated repeaters and reduced wiring) compared to the 2D Pentium 4.
The Teraflops Research Chip introduced in 2007 by Intel is an experimental 80 - core design with stacked memory. Due to the high demand for memory bandwidth, a traditional I/O approach would consume 10 to 25 W. To improve upon that, Intel designers implemented a TSV-based memory bus. Each core is connected to one memory tile in the SRAM die with a link that provides 12 GB/s bandwidth, resulting in a total bandwidth of 1 TB/s while consuming only 2.2 W.
An academic implementation of a 3D processor was presented in 2008 at the University of Rochester by Professor Eby Friedman and his students. The chip runs at a 1.4 GHz and it was designed for optimized vertical processing between the stacked chips which gives the 3D processor abilities that the traditional one layered chip could not reach. One challenge in the manufacturing of the three-dimensional chip was to make all of the layers work in harmony without any obstacles that would interfere with a piece of information traveling from one layer to another.
In ISSCC 2012, two 3D - IC-based multi-core designs using GlobalFoundries 130 nm process and Tezzazon FaStack technology were presented and demonstrated. 3D-MAPS, a 64 custom core implementation with two-logic-die stack was demonstrated by researchers from the School of Electrical and Computer Engineering at Georgia Institute of Technology. The second prototype was from the Department of Electrical Engineering and Computer Science at the University of Michigan called Centip3De, a near-threshold design based on ARM Cortex-M3 cores.
Advantages
Expanded memory capacity, Load reduction, Higher frequency, Bus turn around time will reduce (Improved bus efficiency), Active termination power reduction and Lower power consumption.
No comments:
Post a Comment